Imaging of the appearance time of cerebral blood using [15O]H2O PET for the computation of correct CBF
نویسندگان
چکیده
BACKGROUND Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. Positron emission tomography (PET) with H215O (or C15O2) can quantify CBF and apply kinetic analyses, including autoradiography (ARG) and the basis function methods (BFM). These approaches, however, are sensitive to input function errors such as the appearance time of cerebral blood (ATB), known as the delay time. We estimated brain ATB in an image-based fashion to correct CBF by accounting for differences in computed CBF values using three different analyses: ARG and BFM with and without fixing the partition coefficient. METHODS Subject groups included those with no significant disorders, those with elevated cerebral blood volume, and those with reduced CBF. All subjects underwent PET examination, and CBF was estimated using the three analyses. The ATB was then computed from the differences of the obtained CBF values, and ATB-corrected CBF values were computed. ATB was also estimated for regions of interest (ROIs) of multiple cortical regions. The feasibility of the present method was tested in a simulation study. RESULTS There were no significant differences in the obtained ATB between the image- and ROI-based methods. Significantly later appearance was found in the cerebellum compared to other brain regions for all groups. In cortical regions where CBF was reduced due to occlusive lesions, the ATB was 0.2 ± 1.2 s, which was significantly delayed relative to the contralateral regions. A simulation study showed that the ATB-corrected CBF was less sensitive to errors in input function, and noise on the tissue curve did not enhance the degree of noise on ATB-corrected CBF image. CONCLUSIONS This study demonstrates the potential utility of visualizing the ATB in the brain, enabling the determination of CBF with less sensitivity to error in input function.
منابع مشابه
A Non-invasive Method for Quantifying Cerebral Blood Flow by Hybrid PET/MR.
While positron emission tomography (PET) with 15O-water is the gold standard for imaging cerebral blood flow (CBF), quantification requires measuring the arterial input function (AIF), which is an invasive and noisy procedure. To circumvent this problem, we propose a non-invasive PET/ magnetic resonance (MR) approach that eliminates the need to measure the AIF by using global CBF determined by ...
متن کاملPreliminary evaluation of [1-11C]octanoate as a PET tracer for studying cerebral ischemia: a PET study in rat and canine models of focal cerebral ischemia.
Octanoate is taken up into the brain and is converted in astrocytes to glutamine through the TCA cycle after beta-oxidation. We speculate that [1-11C]octanoate may be used as a tracer for astroglial functions and/or fatty acid metabolism in the brain and may be useful for studying cerebral ischemia. In the present study we investigated brain distribution of [1-11C]octanoate and compared it with...
متن کاملComparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging
Until recently, no direct comparison between [(15)O]water positron emission tomography (PET) and arterial spin labeling (ASL) for measuring cerebral blood flow (CBF) was possible. With the introduction of integrated, hybrid magnetic resonance (MR)-PET scanners, such a comparison becomes feasible. This study presents results of CBF measurements recorded simultaneously with [(15)O]water and ASL. ...
متن کاملComparison of velocity- and acceleration-selective arterial spin labeling with [15O]H2O positron emission tomography.
In the last decade spatially nonselective arterial spin labeling (SNS-ASL) methods such as velocity-selective ASL (VS-ASL) and acceleration-selective ASL have been introduced, which label spins based on their flow velocity or acceleration rather than spatial localization. Since labeling also occurs within the imaging plane, these methods suffer less from transit delay effects than traditional A...
متن کاملDoes cerebral blood flow decline in healthy aging? A PET study with partial-volume correction.
UNLABELLED It remains a matter of controversy as to whether cerebral perfusion declines with healthy aging. In vivo imaging with PET permits quantitative evaluation of brain physiology; however, previous PET studies have inconsistently reported aging reductions in cerebral blood flow (CBF), oxygen metabolism, and glucose metabolism. In part, this may be because of a lack of correction for the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013